Identification and Characterization of Designer Phencyclidines (PCPs) in Forensic Casework

08 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

With the sustained prevalence and introduction of new emerging drugs throughout the world there is a need for continued development and maintenance of platforms that enable rapid identification and characterization of unknown compounds. To complement existing efforts, a collaborative platform between the National Institute of Standards and Technology (NIST) and practicing forensic agencies is being deployed which enables laboratories to leverage techniques and expertise that may not exist at their facilities. Using this approach, unknown compounds are identified and characterized using a suite of analytical tools to obtain (1) a rapid preliminary identification followed by (2) a more complete characterization and confirmation of the preliminary identification. To demonstrate this platform, the characterization of three previously unreported analogs of phencyclidine (PCP) are described. A preliminary identification of the three substances was obtained using direct analysis in real time mass spectrometry (DART-MS) with confirmation by nuclear magnetic resonance (NMR) spectroscopy, gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detection (GC-FID).

Keywords

Emerging Drugs
Novel Psychoactive Substances
Phencyclidine
PCP
Identification

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.