Nuclear Magnetic Resonance Studies of Carbon Dioxide Capture

05 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Carbon dioxide capture is an important greenhouse gas mitigation technology that can help limit climate change. The design of improved capture materials requires a detailed understanding of the mechanisms by which carbon dioxide is bound. Nuclear magnetic resonance (NMR) spectroscopy methods have emerged as a powerful probe of CO2 sorption and diffusion in carbon capture materials. In this article, we first review the practical considerations for carrying out NMR measurements on capture materials dosed with CO2 and we then present three case studies that review our recent work on NMR studies of CO2 binding in metal-organic framework materials. We show that simple 13C NMR experiments are often inadequate to determine CO2 binding modes, but that more advanced experiments such as multidimensional NMR experiments and 17O NMR experiments can lead to more conclusive structural assignments. We further discuss how pulsed field gradient (PFG) NMR can be used to explore diffusion of adsorbed CO2 through the porous framework. Finally, we provide an outlook on the challenges and opportunities for the further development of NMR methodologies that can improve our understanding of carbon capture.

Keywords

Carbon Capture
Carbon Dioxide Capture
NMR spectroscopy
In situ NMR
Metal-organic framework
CO2 adsorption
CO2 absorption
adsorbents
absorbents

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.