Abstract
Despite the massive application of end-point free energy methods in protein-ligand and protein-protein interactions, computational understandings about their performance in relatively simple and prototypical host-guest systems are limited. In this work, we present a comprehensive benchmark calculation with standard end-point free energy techniques in a recent host-guest dataset containing 13 host-guest pairs involving the carboxylated-pillar[6]arene host. We first assess the charge schemes for solutes by comparing the charge-produced electrostatics with many ab initio references, in order to obtain a preliminary albeit detailed view of the charge quality. Then, we focus on four modelling details of end-point free energy calculations, including the docking procedure for the generation of initial condition, the charge scheme for host and guest molecules, the water model used in explicit-solvent sampling, and the end-point methods for free energy estimation. The binding thermodynamics obtained with different modelling schemes are compared with experimental references, and some practical guidelines on maximizing the performance of end-point methods in practical host-guest systems are summarized. Finally, we compare our simulation outcome with predictions in the grand challenge and discuss further developments to improve the prediction quality of end-point free energy methods.