Abstract
Synthetic composite hydrogels comprising supramolecular fibers and covalent polymers have attracted considerable attention because their properties are similar to biological connective tissues. However, an in-depth analysis of the network structures has not been performed. In this study, we discovered the composite network can be categorized into four distinct patterns regarding morphology and colocalization of the components using in situ, real-time confocal imaging. Time-lapse imaging of the network formation process reveals that the patterns are governed by two factors, the order of the network formation and the interactions between the two different fibers. Additionally, the imaging studies revealed a unique composite hydrogel undergoing dynamic network remodeling on the scale of a hundred micrometers to more than one millimeter. Such dynamic properties allow for fracture-induced artificial patterning of a network three dimensionally. This study introduces a valuable guideline to the design of hierarchical composite soft materials.
Supplementary materials
Title
Supplementary Information
Description
A pdf file of Supplementary Information
Actions
Title
Supplementary Movie 1
Description
An AVI file of Supplementary Movie 1
Actions
Title
Supplementary Movie 2
Description
An AVI file of Supplementary Movie 2
Actions
Title
Supplementary Movie 3
Description
An AVI file of Supplementary Movie 3
Actions
Title
Supplementary Movie 4
Description
An AVI file of Supplementary Movie 4
Actions