Calculation of mass transfer limitations of a gas-phase reaction in an isothermal fixed bed reactor: tutorial and sensitivity analysis

27 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The study of the reactivity of solid catalysts requires assessing chemical kinetics and mechanism in the absence of mass transport artifacts. These artifacts consist of the formation of concentration gradients either on the external or internal (inside nanopores) surface of the solid. Despite the existence of models and criteria for assessing the presence of mass transfer limitations during catalytic tests for gas-phase reactions in isothermal fixed bed reactors, the literature does not present straightforward protocols for performing the latter calculations. In this work, we present a systematic and complete protocol for the calculations above. The developed protocol serves as a tutorial for students and researchers. Particularly, the effectiveness factor for external and the Weisz-Prater number for the internal mass transfer limitations were developed. The oxidation of propane over mixed vanadium-aluminum (hydr)oxides was taken as a case study. Based on these protocols we perform a sensitivity study of the models for the following modifications: (i) the equation of state for modeling the thermodynamic properties of the gas phase, (ii) the particle size, (iii) the conversion of propane at two different temperatures and, (iv) the reactant used as a basis of the calculations; i.e., switching from propane to oxygen. Results showed that the model for calculating the effectiveness factor was poorly sensitive to all the above modifications. Meanwhile, the Weisz-Prater number was much more sensitive to the studied modifications, even reaching deviations up to ~200%.

Keywords

solid catalysts
tutorial
mass transfer
effectiveness factor
Weisz-Prater number

Supplementary materials

Title
Description
Actions
Title
Excel file with the calculations
Description
The Supporting Information includes an Excel file with the calculations made for each case.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.