Mebendazole’s Conformational Space and its Predicted Binding to Human Heat-Shock Protein 90

27 June 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recent experimental evidence suggest that mebendazole, a popular antiparasitic drug, binds to heat shock protein 90 (Hsp90) and inhibit acute myeloid leukemia cell growth. In this study we use quantum mechanics (QM), molecular similarity and molecular dynamics (MD) calculations to predict possible binding poses of mebendazole to the adenosine triphosphate (ATP) binding site of Hsp90. Extensive conformational searches and minimization of the five mebendazole tautomers using MP2/aug-cc-pVTZ theory level resulted in 152 minima. Mebendazole-Hsp90 complex models were subsequently created using the QM optimized conformations and protein coordinates obtained from experimental crystal structures that were chosen through similarity calculations. Nine different poses were identified from a total of 600 ns of explicit solvent, all-atom MD simulations using two different force fields. All simulations support the hypothesis that mebendazole is able to bind to the ATP binding site of Hsp90.

Keywords

Heat Shock Protein
Molecular Dynamics
Drug
Tautomers
Leukemia
AML
HSP90
Quantum Mechanics
Mebendazole
repurpose

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.