Non-iterative Method for Constructing Valence Antibonding Molecular Orbitals and a Molecule-adapted Minimum Basis.

23 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

While bonding molecular orbitals exhibit constructive interference relative to atomic orbitals, antibonding orbitals show destructive interference. When full localization of occupied orbitals into bonds is possible, bonding and antibonding orbitals exist in 1:1 correspondence with each other. Antibonding orbitals play an important role in chemistry because they are frontier orbitals that determine orbital interactions, as well as much of the response of the bonding orbital to perturbations. In this work, we present an efficient method to construct antibonding orbitals by finding the orbital that yields the maximum opposite spin pair correlation amplitude in second order perturbation theory (AB2) and compare it with other techniques with increasing the size of the basis set. We conclude the AB2 antibonding orbitals are a more robust alternative to the Sano orbitals as initial guesses for valence bond calculations, due to having a useful basis set limit. The AB2 orbitals are also useful for efficiently constructing an active space, and work as good initial guesses for valence excited states. In addition, when combined with the localized occupied orbitals, and relocalized, the result is a set of molecule-adapted minimal basis functions that is built without any reference to atomic orbitals of the free atom. As examples, they are applied to population analysis of halogenated methane derivatives, H-Be-Cl, and SF6 where they show some advantages relative to good alternative methods.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.