Catalytic, Z-Selective, Semi-Hydrogenation of Alkynes with a Zinc–Anilide Complex

21 June 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The reversible activation of dihydrogen with a molecular zinc anilide complex is reported. The mechanism of this reaction has been probed through stoichiometric experiments and DFT calculations. The combined evidence suggests that H2 activation occurs by addition across the Zn–N bond via a four-membered transition state in which the Zn and N atoms play a dual role of Lewis acid and Lewis base. The zinc hydride complex that results from H2 addition, has been shown to be remarkably effective for the hydrozincation of C=C bonds at modest temperatures. The scope of hy-drozincation includes alkynes, alkenes, and a 1,3-butadiyne. For alkynes, the hydrozincation step is stereospecific leading exclusively to the syn-isomer. Competition experiments show that the hydrozincation of alkynes is faster than the equivalent alkene substrates. These new discoveries have been used to develop an unprecedented catalytic sys-tem for the semi-hydrogenation of alkynes. The catalytic scope includes both aryl and alkyl substituted internal al-kynes and proceeds with high alkene : alkane (96 : 4) and Z : E ratios (>91 : 9). This work offers a first example of selective hydrogenation catalysis using zinc complexes.

Keywords

Hydrozincation
Semi-Hydrogenation
Catalysis
H2 activation
zinc

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Details of experimental and computational procedures.
Actions
Title
cif
Description
cif file containing single crystal XRD data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.