Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X-ray Absorption Spectroscopy

17 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

It is demonstrated that the challenging core hole-particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)-TDDFT. With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ∆CHP-MRSF(R) exhibited near perfect predictions with RMSE ∼ 0.5 eV, featuring a median value of 0.3 and and an interquartile range of 0.4. Overall, the CHP effect is 2 ∼ 4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (nO8π∗) and second (ππ∗) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF-TDDFT provides a promising protocol for core electron spectra both of ground and excited electronic states alike.

Keywords

x-ray absorption
mixed-reference spin-flip
time-dependent density-functional theory
core-hole pair

Supplementary materials

Title
Description
Actions
Title
Supporting Information: Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X-ray Absorption Spectroscopy
Description
XAS C- O- and N- K-edge excitation energies from the ground state and the lowest two excited singlet states.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.