Gelatin modified with alkoxysilanes (GelmSi) forms hybrid hydrogels for bioengineering applications

16 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Biopolymers are ideal candidates for the development of hydrogels for tissue engineering applications. However, chemical modifications are required to further improve their mechanical properties, in particular to cross-link them for long-lasting applications or biofabrication. Herein, we developed a novel gelatin-based hydrogel precursor, “GelmSi”. Gelatin was chosen as starting material because of its biocompatibility and bioactivity, favouring cell adhesion and migration. Alkoxysilane moieties were introduced in a controlled manner on the lysine side chains of gelatin to obtain a hybrid precursor which reacts in physiological conditions, forming covalent siloxane bonds and allowing the formation of a three-dimensional chemical network. On the contrary to unmodified gelatin, siloxane covalent network dramatically increases the stiffness and the thermal stability of the resulting gelatin-based hydrogel, making it suitable for cell encapsulation and cell culture. The biorthogonality and versatility of the GelmSi hybrid hydrogel unlock a broad range of gelatin-based bioengineering applications.

Keywords

gelatin
hybrid hydrogel
sol-gel process
cell encapsulation
biorthogonality
tissue engineering

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.