Covalent functionalization of CdSe quantum dot films with molecular [FeFe] hydrogenase mimics for light-driven hydrogen evolution

15 June 2022, Version 1

Abstract

CdSe quantum dots combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the quantum dots surface is expected to enhance the activity of the system by establishing close contact between the [FeFe] hydrogenase mimics and the light harvesting quantum dots supporting the transfer and accumulation of several electrons which are needed to drive hydrogen evolution. To circumvent the problem of limited colloidal stability upon covalent functionalization of the quantum dots under optimal pH conditions for hydrogen evolution, in this work, we report on the functionalization of quantum dots immobilized in a thin film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as anchoring functionality to bind to the QD surface. The functionalization was monitored via UV/Vis absorption, photoluminescence, infrared (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) and quantified via micro X-ray fluorescence spectrometry (μXRF). The activity of the molecularly functionalized thin film was demonstrated and in dependence on the linker length TONs in the range of 360-580 (short linker) and 130-160 (long linker) were achieved. This work presents a proof of concept study showing the potential of thin film architectures of immobilized quantum dots as platform for light-driven hydrogen evolution and beyond.

Keywords

semiconductor
nanoparticle
[FeFe] hydrogenase mimic
photocatalysis
thin films

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental details on synthesis and characterization methods, TEM, AFM, additional absorption, IR, XPS spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.