Cationic Gold(II) Complexes: Experimental and Theoretical Study

10 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Gold(II) complexes are rare and their application for catalysis of chemical transformations is unexplored. The reason is their easy oxidation or reduction to the more stable gold(III) or gold(I) complexes, respectively. We explored the thermodynamics of the formation of the [(L)AuIIX]+ complexes (L = ligand, X = halogen) from their gold(III) precursors and investigated the stability and the spectral properties in the IR and VIS range of the formed gold(II) complexes in the gas phase. The results show that the best ancillary ligands L for stabilizing gaseous [(L)AuIIX]+ complexes are bidentate and tridentate ligands with nitrogen donor atoms. The electronic structure and spectral properties of the investigated gold(II) complexes were correlated with the quantum chemical calculations. The results show that the molecular and electronic structure of the gold(II) complexes as well as their spectroscopic properties are very similar to the analogous stable copper(II) complexes.

Keywords

Density functional calculations
Electronic spectroscopy
Gold(II)
Mass spectrometry
Vibrational spectroscopy

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Additional experimental and theoretical details. supporting mass spectra, supporting electrochemistry experiments, supporting theoretical calculations
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.