Photochemical Strategies Enable the Synthesis of Tunable Azetidine-Based Energetic Materials

10 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Despite their favorable properties, azetidines are often overlooked as lead compounds across multiple industries. This is often attributed to the challenging synthesis of densely functionalized azetidines in an efficient manner. In this work, we report the scalable synthesis and characterization of seven azetidines with varying regio- and stereochemistry, and their application as novel azetidine-based energetic materials, enabled by the visible light-mediated aza Paternò-Büchi reaction. The performance and stark differences in physical properties of these new compounds make them excellent potential candidates as novel solid melt-castable explosive materials, as well as potential liquid propellant plasticizers. The nitroazetidine materials synthesized exhibit reasonable sensitivities, higher densities, better oxygen balances, increased detonation pressures and velocities, as well as improved specific impulses, compared to the state-of-the-art materials. This work highlights the scalability and utility of the visible-light aza Paternò-Büchi reaction and demonstrates the impact of stereochemical considerations on the physical properties of azetidine-based energetics. Considering the versatility and efficiency of the presented synthetic strategies, we expect that this work will guide the development of new azetidine-based materials in the energetics space as well as other industries, including pharmaceuticals and agrochemicals.

Keywords

aza Paterno-Buechi
energetic materials
azetidines

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.