The Role of Quantum Interference in Intramolecular Singlet Fission

08 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Quantum interference (QI), the constructive or destructive interference of conduction pathways through molecular orbitals, plays a fundamental role in enhancing or suppressing charge and spin transport in organic molecular electronics. Graphical models have been developed to predict constructive versus destructive interference in polyaromatic hydrocarbons, and have successfully estimated the large conductivity differences observed in single-molecule transport measurements. A major challenge lies in extending these models to excitonic (photoexcited) processes, which typically involve distinct orbitals with different symmetries. Here, we investigate how QI models can be applied as bridging moieties in intramolecular singlet fission (iSF) compounds to predict relative rates of triplet pair formation. In a series of bridged iSF dimers, we find that destructive QI always leads to slower triplet pair formation across different bridge lengths and geometries. A combined experimental and theoretical approach reveals the critical considerations of bridge topology and frontier molecular orbital energies in applying QI conductance principles to predict rates of multiexciton generation.

Supplementary materials

Title
Description
Actions
Title
QI Supplementary Information
Description
experimental and computational details, synthetic characterization, transient absorption spectra and global analysis, DFT geometry calculations, NMR spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.