Simultaneous neutron and X-ray tomography for ex-situ 3D visualization of graphite anode degradation in extremely fast-charged lithium-ion batteries.

17 June 2022, Version 1

Abstract

Extreme fast charging (XFC) of commercial lithium-ion batteries (LIBs) in ≤10-15 minutes will significantly advance the deployment of electric vehicles globally. However, XFC leads to considerable capacity fade, mainly due to graphite anode degradation. Non-destructive three-dimensional (3D) investigation of XFC-cycled anodes is crucial to connect degradation with capacity loss. Here, we demonstrate the viability of simultaneous neutron and X-ray tomography (NeXT) for ex-situ 3D visualization of graphite anode degradation. NeXT is advantageous because of the sensitivity of neutrons to Li and H and X-rays to Cu. We combine the neutron and X-ray tomography with micron resolution for material identification and segmentation on one pristine and one XFC-cycled graphite anode, thereby underscoring the benefits of the simultaneous nature of NeXT. Our ex-situ results pave the way for the design of NeXT-friendly LIB geometries that will allow operando and/or in-situ 3D visualization of graphite anode degradation during XFC.

Keywords

Neutron imaging
X-ray imaging
tomography
extreme fast charging
lithium-ion batteries

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.