CrystalNets.jl: Identification of Crystal Topologies

26 May 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present here an open-source Julia library for the topological identification of crystalline materials, with algorithmic and computational improvements over the previously available software in the field, resulting in a speed increase of one order of magnitude. This new algorithm and implementation can therefore be used at large scale in high-throughput screening methodologies. We have validated and benchmarked CrystalNets.jl against a diverse set of crystal databases, covering in particular metal–organic frameworks, aluminophosphates, zeolites, and other inorganic compounds.

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.