One-Pot Two-Step Catalytic Synthesis of Rationally Designed 6-amino-2-pyridone-3,5-dicarbonitriles Enabling Anti-Cancer Bioactivity

26 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein we report a one-pot two-step synthesis of a bioactive 6-amino-2-pyridone-3,5-dicarbonitrile derivative using natural product catalysts betaine and guanidine carbonate. Upon identification of the anticancer bioactivity of the compound, we carried out structure-activity relationship and rationally designed a library of 16 derivatives. Out of the compounds, 5o had the most potent anti-cancer activity against murine glioblastoma cell lines and was selected for further study. Compound 5o showed anti-cancer properties against liver, breast, lung as well as primary patient-derived glioblastoma cell lines. Furthermore, 5o in combination with specific clinically relevant brain-penetrant small molecule inhibitors induces enhanced cytotoxicity in a murine glioblastoma cell line. Through our current work, we establish a promising 6-amino-2-pyridone-3,5-dicarbonitrile based lead compound with anti-cancer activity either on its own or in combination with specific clinically relevant small molecule kinase and proteasome inhibitors.

Keywords

6-amino-2-pyridone-3
5-dicarbonitriles
betaine
guanidine carbonate
one-pot two-step reaction
cancer

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.