Carbon Nanodots with Solvatochromic Photoluminescence for the Electrochemical Determination of Estrogenic Steroids in Tap, Nat-ural and Municipal Waste Waters

20 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein, we utilized carbon nanodots (R-CNDs) for the electrochemical detection of estrogens in tap, natural water samples and simulated effluents from Swedish Waste Water Treatment Plants (WWTPs). R-CNDs were prepared from 2-aminophenol by solvothermal synthesis and used as a modifier for chitosan-based selective membranes. The data obtained from atomic force microscopy and transmission electron microscopy suggest a spherical morphology of the R-CNDs with lateral size in the range of 3–8 nm and the height of 1–8 nm. In contrast to most other known carbon nanodots, R-CNDs are soluble in various organic solvents, including apolar, and less soluble in water. Small nanodots (3 nm) are more hydrophilic than large ones (6–8 nm) and can be separated from the bulk suspension of R-CNDs in heptane by their extraction into water/ethanol mixture. Suspensions of large R-CNDs in apolar solvents exhibit green photoluminescence, while small R-CNDs in polar solvents have orange. This phenomenon was attributed to a solvatochromic rather than to a quantum effect. The R-CNDs were embedded on a chitosan-modified pencil electrode and the electrode was applied for voltammetric determination of four abandoned estrogens: Estrone, Estradiol, Estriol, and Ethynyl Estradiol. The sensor demonstrates a group-selective response to the estrogens with a detection limit of 17.0 nmol·L-1. It can be applied to determine the estrogens in the range of 0.05–4.6 μmol·L−1 in the presence of typical interfering bioactive compounds, such as paracetamol, uric acid, progesterone, sulfamethoxazole, trimethoprim, ibuprofen, caffeine. The developed sensors show repeatability and reproducibility values of 1.8–3.4% and 4.3%, respectively. The efficiency of the was proved by application for tap and lake water samples, where the recovery range was found to be 93–100%. The low cost, stability and high sensitivity and selectivity of fabricated sensors, make R-CNDs a perspective modifier for electrochemical sensors for the detection of estrogen microquantities in variable water samples.

Keywords

carbon nanodots
2-aminophenol
solvatochromic effect
hormone pollutants
estrogen
electrochemical sensors

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.