Abstract
Metal-organic frameworks (MOFs) are among the most promising materials for next-generation energy storage systems. However, the impact of particle morphology on the energy storage performances of these frameworks is poorly understood. To address this, here we use coordination modulation to synthesise three samples of the conductive MOF Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with distinct microstructures. Supercapacitors assembled with these samples conclusively demonstrate that sample microstructure and particle morphology have a significant impact on the energy storage performances of MOFs. Samples with ‘flake-like’ particles, with a pore network comprised of many short pores, display superior capacitive performances than samples with either ‘rod-like’ or strongly agglomerated particles. The results of this study provide a target microstructure for conductive MOFs for energy storage applications.
Supplementary materials
Title
Supplementary Information
Description
Includes experimental details and additional SEM, TEM, gas sorption, and electrochemistry data and analysis.
Actions