High-field NMR, reactivity, and DFT modeling reveal the gamma-Al2O3 surface hydroxyl network.

18 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aluminas are strategic materials used in many major industrial processes, either as catalyst supports or as catalysts in their own right. The transition alumina gamma-Al2O3 is a privileged support, whose reactivity can be tuned by thermal activation. This study provides an qualitative and quantitative assessment of the hydroxyl groups present on the surface of gamma-Al2O3 at three different dehydroxylation temperatures. The principal [AlOH] configurations are identified and described in unprecedented detail at the molecular level. The structures were established by combining information from high-field 1H and 27Al solid-state NMR, IR spectroscopy and DFT calculations, as well as selective reactivity studies. Finally, the relationship between the hydroxyl structures and the molecular-level structures of the active sites in catalytic alkane metathesis is discussed.

Keywords

alumina
solid-state NMR
catalysis
surface chemistry
DFT calculations

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
experimental details, additional spectroscopic and reactivity data, computational data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.