Capturing Molecular Interactions in Graph Neural Networks: A Case Study in Multi-Component Phase Equilibrium

04 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Graph neural networks (GNNs) have been widely used for predicting molecular properties, especially for single molecules. However, when treating multi-component systems, GNNs have mostly used simple data representations (concatenation, averaging, or self-attention on features of individual components) that might fail to capture molecular interactions and potentially limit prediction accuracy. In this work, we propose a GNN architecture that captures molecular interactions in an explicit manner by combining atomic-level (local) graph convolution and molecular-level (global) message passing through a molecular interaction network. We tested the architecture (which we call SolvGNN) on a comprehensive phase equilibrium case study that aims to predict activity coefficients for a wide range of binary and ternary mixtures; we built this large dataset using the COnductor-like Screening MOdel for Real Solvation (COSMO-RS). We show that SolvGNN can predict composition-dependent activity coefficients with high accuracy and show that it Outperforms a previously developed GNN used for predicting infinite-dilution activity coefficients. We performed counterfactual analysis on the SolvGNN model that allowed us to explore the impact of functional groups and composition on equilibrium behavior. We also used the SolvGNN model for the development of a computational framework that automatically creates phase diagrams for a diverse set of complex mixtures. All scripts needed to reproduce the results are shared as open-source code.

Supplementary materials

Title
Description
Actions
Title
SI for Capturing Molecular Interactions in Graph Neural Networks: A Case Study in Multi-Component Phase Equilibrium
Description
Supporting Information for Capturing Molecular Interactions in Graph Neural Networks: A Case Study in Multi-Component Phase Equilibrium
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.