Synthesis of Highly Congested Tertiary Alcohols via the [3,3] Radical Deconstruction of Breslow Intermediates

04 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Pericyclic processes such as [3,3]-sigmatropic rearrangements leading to the rapid generation of molecular complexity constitute highly valuable tools in organic synthesis. Herein, we report the formation of particularly hindered tertiary alcohols via rearrangement of Breslow intermediates formed in situ from readily available N-allyl thiazolium salts and benzaldehyde derivatives. Experimental mechanistic studies performed suggest that the reaction proceeds via a close radical pair which recombine in a regio- and diastereoselective manner, formally leading to [3,3]-rearranged products.

Keywords

Breslow
quaternary center
thiazole
thiazolium

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.