Integrated multi-material portable 3D-printed platform for electrochemical detection of dopamine and glucose.

29 April 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

3D-printing has become a fundamental part of research in many areas of investigation since it provides rapid and personalized production of parts that meet very specific user needs. Biosensing is not an exception, and production of electrochemical sensors that can detect a variety of redox mediators and biologically relevant molecules has been widely reported. However, most 3Dprinted electrochemical sensors detailed in the literature rely on big, individual, single-material electrodes that require large sample volumes to perform effectively. Our work exploits multi-material fused filament fabrication 3D-printing to produce a compact electrochemical sensor. The device features a built-in well with a volume of approximately 100 μL where the sample is deposited and analyzed via cyclic voltammetry, differential pulse voltammetry, and chronoamperometry to assess sensor performance and sensitivity. The integrated 3D-printed platform successfully detects electrochemical activity for hexaammineruthenium (III) chloride and potassium ferricyanide (0.1 mM to 2 mM in 100 mM KCl), dopamine (50 μM to 1 mM in 1xPBS), and glucose via mediator-free and mediated amperometric glucose oxidase enzyme-based sensors (1 mM to 12 mM in 1xPBS), indicating good acceptance of biological modification. These results reveal the exciting potential of multi-material 3D-printing and how it can be used for the rapid development of efficient, small, integrated, personalized electrochemical biosensors.

Keywords

3D-printing
electrochemical biosensor
dopamine
glucose
multi-material 3D-printing

Supplementary materials

Title
Description
Actions
Title
Multi-material 3D-printed platform for electrochemical detection and analysis of dopamine and glucose - Supporting Information
Description
Detailed dimensions and parameters of the presented device. Detailed data, analysis, and plots to support all the data presented in the paper entitled 'Integrated multi-material portable 3D-printed platform for electrochemical detection of dopamine and glucose'.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.