Abstract
Chemical space is a powerful, general, and practical conceptual framework in drug discovery and other areas in chemistry that addresses the diversity of molecules and it has various applications. Moreover, chemical space is a cornerstone of chemoinformatics as a scientific discipline. In response to the increase in the set of chemical compounds in databases, generators of chemical structures, and tools to calculate molecular descriptors, novel approaches to generate visual representations of chemical space in low dimensions are emerging and evolving. Such approaches include a wide range of commercial and free applications, software, and open-source methods. Herein, the current state of chemical space in drug design and discovery is reviewed. The topics discussed herein include advances for efficient navigation in chemical space, the use of this concept in assessing the diversity of different data sets, exploring structure-property/activity relationships for one or multiple endpoints, and compound library design. Recent advances in methodologies for generating visual representations of chemical space have been highlighted, thereby emphasizing open-source methods. It is concluded that quantitative and qualitative generation and analysis of chemical space require novel approaches for handling the increasing number of molecules and their information available in chemical databases (including emerging ultra-large libraries). In addition, it is of utmost importance to note that chemical space is a conceptual framework that goes beyond visual representation in low dimensions. However, the graphical representation of chemical space has several practical applications in drug discovery and beyond.