Grouped representation of interatomic distances as a similarity measure for crystal structures

21 April 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Determining how similar two materials are in terms of both atomic composition and crystallographic structure remains a challenge, the solution of which would enable generalised machine learning using crystal structure data. We demonstrate a new method of describing crystal structures based on interatomic distances, termed the Grouped Representation of Interatomic Distances (GRID). This fast to compute descriptor can equally be applied to crystalline or disordered materials, and encodes additional information beyond pairwise distances, such as coordination environments. Combined with earth mover’s distance as a measure of similarity, we show that GRID is able to quantitatively compare materials involving both short- and long-range structural variation. Using this new material descriptor, we show that it can accurately predict bulk moduli using a simple nearest-neighbour model, and that the resulting similarity shows good generalisability across multiple materials properties.

Keywords

structure descriptor
machine learning
materials
property prediction

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supporting information contains: further plots of data distributions (bulk modulus distribution, calculated distances); visualisation of the compositional distance matrix, comparisons between EMD and cosine similarity; and details of anomalous materials.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.