Unusual water-assisted NO adsorption over Pd/FER calcined at high temperatures: The effect of cation migration

20 April 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Moisture contained in vehicle exhaust gas normally degrades the capacity and efficiency of Pd ion-exchanged zeolites as NOx adsorbents by competitive adsorption on active sites. Here, we report a counterexample to this general proposition, in which moisture facilitates the storage of NO as a nitrosyl complex on hydrated Pd ions in high temperature calcined FER-type zeolites. The divalent Pd2+ cations upon elevated temperature (>800 °C) calcination occupy sterically constrained cationic position that render them inactive for the adsorption of probe molecules such as NO. These ‘hidden’ Pd ions, however, are accessible by NO when the zeolite is hydrated, but readily release NO at around 200°C as dehydration proceeds. By combining systematic in situ infra-red data with X-ray diffraction Rietveld analyses, we revealed that the high temperature-induced relocation of Pd ions to more stable cationic positions located near 6-membered ring of the ferrierite cage is responsible for this anomalous behavior. This finding constitutes a notable advance in understanding coordination chemistry of cations in zeolites.

Keywords

zeolite
palladium in zeolite
nitric oxide adsorption
atomically dispersed palladium in zeolite
water induced nitric oxide adsorption

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.