Hybrid, Interpretable Machine Learning for Thermodynamic Property Estimation using Grammar2vec for Molecular Representation

18 April 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Property prediction models have been developed for several decades with varying degrees of performance and complexity, from the group contribution-based methods to molecular simulations-based methods. An interesting issue in this area is finding an appropriate representation of molecules inherently suited for the property modeling problem. Here, we propose Grammar2vec, a SMILES grammar-based framework for generating dense, numeric molecular representations. Grammar2vec embeds molecular structural information contained in the grammar rules underlying SMILES string representations of molecules. We use Grammar2vec representations to build machine learning-based models for estimating normal boiling point (Tb) and critical temperature (Tc) and benchmark their performance against the popularly used group contribution (GC)-based methods. To ensure interpretability of the developed ML model, we perform a Shapley values-based analysis to estimate feature importance and simplify (or prune) the trained model.

Keywords

Hybrid modeling
Machine learning
artificial intelligence
property prediction
grammar2vec

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.