Batch-Screening Guided Continuous Flow Synthesis of the Metal-organic Framework HKUST-1 in a Millifuidic Droplet Reactor

31 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Metal-organic frameworks (MOFs) are a class of crystalline and porous adsorbents, with wide-ranging applications in gas separations, membrane materials as well as sensors. Commonly used batch synthesis techniques for MOF production are limited by low productivity, high operating costs, and slow crystallization timescales, severely impeding the large-scale manufacturing of these materials. However, batch synthesis is a useful and easy technique to screen multiple reaction parameters to find an optimal chemistry. Therefore, in this study, we have used the batch process and screened a multidimensional reaction space consisting of 45 sample variations based on the crystallinity, yield and instantaneous precipitation, which could lead to tube clogging under flow conditions. We have found one optimized reaction chemistry, that could be used in flow conditions, which in this study is a novel millifluidic droplet-based reactor for the continuous synthesis of HKUST-1 crystals. The biphasic flow in the millifluidic reactor consisted of droplets of the reactant solution, dispersed in a continuous phase of silicone oil. We investigate the differences in the quality and quantity of HKUST-1 synthesized via the continuous and batch techniques. Moreover, we have demonstrated that the HKUST-1 samples prepared via the continuous synthesis in a droplet based millifluidic reactor, at an ultra-low residence time exhibit excellent physical properties comparable to that obtained for the samples prepared by the traditional batch process. A clean, easy-to-install, and reusable millifluidic reactor presented in this work may pave the path for an economically viable, large-scale synthesis of HKUST-1.

Keywords

Metal-Organic Frameworks
Droplet Millifluidic Reactor
Continuous Synthesis
HKUST-1
Reaction Optimization
Physical Characterization
Reactive Crystallization

Supplementary materials

Title
Description
Actions
Title
Supplementary Info
Description
Supplementary Info
Actions
Title
Supplementary Video 1
Description
Supplementary Video 1
Actions
Title
Supplementary Video 2
Description
Supplementary Video 2
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.