Sustainable and Scalable Synthesis of Noroxymorphone via a Key Electrochemical N-Demethylation Step

29 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Noroxymorphone is a pivotal intermediate in the synthesis of important opioid antagonists such as naloxone and naltrexone. The preparation of noroxymorphone from thebaine, a naturally occurring opioate isolated from poppy extract, is a multistep sequence in which oxycodone is first generated and then N- and O-demethylated. Both demethylations are problematic from the safety and sustainability viewpoint, as they involve harmful reagents such as alkyl chloroformates or boron tribromide. Herein, we present a green, safe an efficient telescoped process for the N- and O-demethylation of oxycodone. The method is based on the anodic oxidative intramolecular cyclization of the N-methyl tertiary amine with the 14-hydroxyl group of the morphinan, followed by hydrolysis with hydrobromic acid, which releases the carbon from both heteroatoms. The electrolysis process has been transferred to a scalable flow electrolysis cell, significantly improving the reaction throughput and increasing the space-time yield over 300-fold with respect to batch. The sustainability of the new methodology has been assessed by means of green metrics and qualitative indicators. The sustainability assessment has demonstrated that the new methodology is far superior to the conventional chloroformate process

Keywords

electroorganic synthesis
electrochemistry
opioids
N-demethylation
O-demethylation
green chemistry
sustainable synthesis
flow chemistry
flow electrochemistry
oxycodone
opioid antagonists
naloxone

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.