Abstract
Zeolites with a few unit cells are promising as catalyst and adsorbents. The quest to synthesize the smallest zeolites has recently resulted in 4 to 8 nm nanozeolites, about 2 to 4 unit cells, obtained with a smart choice of structure directing agent. These findings pose the question of what is the smallest zeolite that could be obtained by hydrothermal synthesis. Here we address this question using molecular simulations and thermodynamic analysis. The simulations predict that amorphous precursors as small as 4 nm can crystallize zeolites, in agreement with the experiments. We find that interfacial forces dominate the structure of smaller particles, resulting in size-dependent compact isomers that have ring and pore distributions different from open framework zeolites. The instability of zeolites smaller than 4 nm precludes a classical mechanism of nucleation from solution or through assembly of small nanoslabs.