What is the Smallest Zeolite that Could be Synthesized?

22 February 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Zeolites with a few unit cells are promising as catalyst and adsorbents. The quest to synthesize the smallest zeolites has recently resulted in 4 to 8 nm nanozeolites, about 2 to 4 unit cells, obtained with a smart choice of structure directing agent. These findings pose the question of what is the smallest zeolite that could be obtained by hydrothermal synthesis. Here we address this question using molecular simulations and thermodynamic analysis. The simulations predict that amorphous precursors as small as 4 nm can crystallize zeolites, in agreement with the experiments. We find that interfacial forces dominate the structure of smaller particles, resulting in size-dependent compact isomers that have ring and pore distributions different from open framework zeolites. The instability of zeolites smaller than 4 nm precludes a classical mechanism of nucleation from solution or through assembly of small nanoslabs.

Keywords

crystallization
hydrothermal synthesis
zeolites
microporous materials
phase transitions
thermodynamics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.