Evidence for Low-valent Electronic Configurations in Iron–Sulfur Clusters

14 February 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Although biological iron-sulfur (Fe–S) clusters perform some of the most difficult redox reactions in Nature, they are thought to be composed exclusively of Fe2+ and Fe3+ ions, as well as mixed-valent pairs with average oxidation states of Fe2.5+. We herein show that Fe–S clusters formally composed of these valences can access a wider range of electronic configurations—in particular, those featuring low-valent Fe1+ centers. We demonstrate that CO binding to a synthetic [Fe4S4]0 cluster supported by N-heterocyclic carbene ligands induces generation of Fe1+ centers via intracluster electron transfer, wherein a neighboring pair of Fe2+ sites reduces the CO-bound site to a low-valent Fe1+ state. Similarly, CO binding to an [Fe4S4]+ cluster induces electron delocalization with a neighboring Fe site to form a mixed-valent Fe1.5+Fe2.5+ pair in which the CO-bound site adopts partial low-valent character. These low-valent configurations engender remarkable C–O bond activation without having to traverse highly negative and physiologically inaccessible Fe2+/Fe1+ redox couples.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.