A C-H Activation-Based Enantioselective Synthesis of Lower Carbo[n]helicenes (n = 4-6)

14 February 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The unique three-dimensional structure of carbohelicenes have fascinated generations of molecular chemists and has been exploited through a wide range of applications. In particular, their strong circularly polarized luminescence (CPL) has raised much attention in recent years due to promising applications in the design of new optical materials. Whereas a number of important precedents report enantioselective syntheses of fused carbo- and heterohelicenes, a direct catalytic enantioselective method allowing the synthesis of lower, nonfused carbo[n]helicenes (n = 4-6) is still lacking. We report that Pd-catalysed enantioselective C–H arylation in the presence of a unique bifunctional phosphine-carboxylate ligand provides a simple and general access to these simple carbo[n]helicenes. Computational mechanistic studies indicate that both the C–H activation and reductive elimination steps contribute to the overall enantioselectivity. In addition, the observed enantio-induction seems to arise from a combination of noncovalent interactions and steric repulsion between the substrate and ligand during the two key reductive elimination steps. Moreover, the current method allows a comparative study of the CPL properties of lower carbo[n]helicenes, which led to the discovery that carbo[4]helicenes actually display CPL responses comparable to the higher carbo[6]helicene congeners.

Keywords

C-H activation
helicenes
enantioselective catalysis
chiroptical properties

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.