Abstract
Mechanical forces acting on atoms or molecular groups can alter chemical kinetics and decomposition paths. So called mechanochemistry has been proposed to influence a variety of processes, from the formation of prebiotic compounds during planetary collisions to the shock-induced initiation of explosives. It has also been harnessed in various engineering applications such as mechanophores and ball milling in industrial applications. Experimental and computational tools designed to characterize the effect of mechanics on chemistry have focused exclusively on simple linear forces between pairs of atoms or molecular groups. However, the mechanical loading in condensed matter systems is significantly more complex and involves many-body deformations. Therefore, we propose a methodology to characterize the effect of many-body intra-molecular strains on decomposition kinetics and reaction pathways. We combine four-body external potentials with reactive molecular dynamics and show that many body strains that mimic those observed in condensed matter encourage bond rupture in a spiropyran mechanophore and accelerate thermal decomposition of condensed TATB, an energetic material. The approach is generalizable to a variety of systems and can be used in conjunction with ab initio molecular dynamics, and the two examples utilized here illustrates both the versatility of the method and the importance of many-body mechanochemistry.
Supplementary materials
Title
Supplemental Material to: Many-Body Mechanochemistry: Intra-molecular Strain in Condensed Matter Chemistry
Description
Additional implementation details and system statistics for the steered MD method developed in the main manuscript.
Actions