Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport

04 February 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Here, we report on a novel class of fluorofoldamer-based artificial water channels (AWCs) that combines excellent water over ion selectivity with extraordinarily high water transport efficiency and structural simplicity and robustness. These AWCs were produced by a facile one-pot copolymerization reaction under mild conditions. Among these channels, the best-performing channel (AWC 1) is a n-C8H17-decorated foldamer nanotube with an average channel length of 2.8 nm and a pore diameter of 5.2 Å. AWC 1 demonstrates an ultrafast water conduction rate of 1.4 × 1010 H2O/s per channel, outperforming the archetypal biological water channel, aquaporin 1, by 27%, while excluding salts (i.e., NaCl and KCl) and protons. Unique to this class of channels, the inwardly facing C(sp2)-F moieties are proposed as being critical to enabling the ultrafast and superselective water transport properties observed.

Supplementary materials

Title
Description
Actions
Title
Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport
Description
The detailed synthesis and characterization analysis protocol of the experiments.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.