A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo

01 February 2022, Version 1

Abstract

Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit the target and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. The oral route of administration is the option of choice in the clinic, but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4 deficient cancers. Here we outline structure- and property-guided approaches that led to the first orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.

Keywords

Targeted Protein Degradation
PROTAC
SMARCA2
Oral Bioavailability

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Synthetic protocols, analytical data and x-ray structure data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.