Construction of axial chirality via asymmetric radical trapping by cobalt under visible light

18 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

3d-Metals have been identified as economic and sustainable alternatives to palladium, the frequently used metal in transition-metal-catalyzed cross-couplings. However, cobalt has long stood behind its neighboring elements, nickel and copper, in asymmetric radical couplings, owing to its high catalytic activity in the absence of ligands. Here, we disclose an asymmetric metallaphotoredox catalysis (AMPC) strategy for the dynamic kinetic resolution (DKR) of racemic heterobiaryls, which represents the first example of visible-light-induced, asymmetric radical couplings for the construction of axial chirality. This success can also be extended to the reductive cross-coupling variant featuring on more easily available feedstocks. The keys to these successes are the rational design of a sustainable AMPC system by merging asymmetric cobalt catalysis with organic photoredox catalysis and, perhaps more importantly, the identification of an efficient chiral polydentate ligand.

Keywords

visible light photocatalysis
cobalt catalysis
asymmetric catalysis
axial chirality
radical coupling

Supplementary materials

Title
Description
Actions
Title
Supplementary_Materials
Description
Supplementary_Materials
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.