Disclosing the role of C4-oxo substitution in the photochemistry of DNA and RNA pyrimidine monomers: Formation of photoproducts from the vibrationally-excited ground state

27 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Oxo and amino substituted purines and pyrimidines have been suggested as protonucleobases participating in ancient pre-RNA forms. Considering electromagnetic radiation as a key environmental selection pressure in early Earth, the investigation of the photophysics of modified nucleobases is crucial to determine their viability as nucleobases’ ancestors and to understand the factors that rule the photostability of natural nucleobases. In this Letter, we combine femtosecond transient absorption spectroscopy and quantum mechanical simulations to reveal the photochemistry of 4-pyrimidinone, a close relative of uracil. Irradiation of 4-pyrimidinone with ultraviolet radiation populates the S1(pp*) state, which decays to the vibrationally-excited ground state in a few hundreds of femtoseconds. Analysis of the post-irradiated sample in water reveals the formation of a 6-hydroxy-5H-photohydrate and 3-(N-(iminomethyl)imino)propanoic acid as the primary photoproducts. 3-(N-(iminomethyl)imino)propanoic acid originates from the hydrolysis of an unstable ketene species generated from the C4-N3 photofragmentation of the pyrimidine core.

Keywords

DNA/RNA photostability and photochemistry
DNA/RNA ancestors
Nucleobase hydrates
Nucleobase fragmentation
Time-resolved spectroscopy
ab initio calculations
non-adiabatic molecular dynamics.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Materials and experimental methods, Computational details, complementary results
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.