Novel Quinolizine AIE System: Visualization of Molecular Motion and Elaborate Tailoring for Biological Application

27 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular motions are ubiquitous in nature and they immutably play intrinsic roles in all actions. However, exploring appropriate models to decipher molecular motions is an extremely important but very challenging task for researchers. Considering aggregation-induced emission (AIE) luminogens possess their unique merits to visualize molecular motions, it is particularly fascinating to construct new AIE systems as model to study molecular motion. Herein, a novel quinolizine (QLZ) AIE system was constructed based on the restriction intramolecular vibration mechanism. It was demonstrated that QLZ could act as an ideal model to visualize single-molecule motion and macroscopic molecular motion via fluorescence change. Additionally, further elaborate tailoring of this impressive core achieved highly efficient reactive oxygen species production and realized fluorescence imaging-guided photodynamic therapy applications, which confirms the great application potential of this new AIE-active QLZ core. Therefore, this work not only provides an ideal model to visualize molecular motion but also opens a new way for the application of AIEgens.

Keywords

molecular motion
aggregation-induced emission
restriction of intramolecular vibration
quinolizine
photodynamic therapy

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Materials and methods, synthesis and characterizations and supporting figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.