NHCs and Visible Light-mediated Photoredox Co-catalyzed Radical 1,2-Dicarbonylation of Alkenes for 1,4-Diketones

27 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Alkenes are ubiquitous, and radical difunctionalization of alkenes represents one of the most practical approaches to constructing value-added compounds. Dicarbonylation of alkenes provides direct access to value-added 1,4-dicarbonyl compounds. However, selectivity control for unsymmetric 1,2-dicarbonylation is an unclosed challenge. We herein describe NHCs and photocatalysis co-catalyzed three competent radical 1,2-dicarbonylation of alkenes by distinguishing two carbonyl groups, providing structurally diversified 1,4-diketones. Mechanistic studies indicated that NHCs-stabilized ketyl-type radicals originate from aroyl fluorides via oxidative quenching process of excited photocatalysis, and acyl radicals are generated from single-electron-oxidation of α-keto acids. Distinct properties of acyl radical and NHCs-stabilized ketyl radical contributed to selectivity control. Transient acyl radicals are rapidly added to alkenes delivering alkyl radicals, which undergo subsequent radical-radical cross-coupling with ketyl-type radicals, affording 1,2-dicarbonylation products. This transformation features mild reaction conditions, broad substruct scope, and excellent selectivity, providing a general and practical approach for the dicarbonylation of olefins.

Keywords

NHCs
Photoredox
Alkenes
1
4-Diketones
Dicarbonylation

Supplementary materials

Title
Description
Actions
Title
Photochemical experiments
Description
Photochemical experiments
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.