Abstract
Sodium thiophophates are promising materials for large-scale energy storage applications benefiting from high ionic conductivities and the-political abundance of the elements. A representative of this class is Na4P2S6, which currently shows two known polymorphs–α and β. This work describes a third polymorph of Na4P2S6, γ, that forms above 580◦C, exhibits fast ion conduction with low activation energy, and is mechanically soft. Based on high-temperature diffraction, pair distribution function analysis, thermal analysis, impedance spectroscopy, and ab initio molecular dynamic calculations, γ-Na4P2S6 is identified to be a plastic crystal, characterized by dynamic orientational disorder of the P2S64– anions on a translationally fixed body centered cubic lattice. The prospect of stabilizing plastic crystals at operating temperatures of solid-state batteries and benefiting from their high ionic conductivities as well as mechanical properties could have a strong impact in the field of solid-state battery chemistry.
Supplementary materials
Title
Supporting Information
Description
Additional details on diffraction experiments, Raman spectroscopy, pair distribution function analysis, impedance spectroscopy, photographs of impedance samples, and AIMD simulation results.
Actions