Abstract
Highly concentrated aqueous binary solutions of acetate salts are emerging as promising systems for advanced energy storage applications. Together with superior solubility of CH3COOK helpful in achieving water-in-salt electrolyte concentrations, the presence of CH3COOLi or CH3COONa permits intercalation of desired cations in electrode crystalline phases. Although these systems have captured profound scientific attention in recent years, a fundamental understanding of their physicochemical properties is still lacking. In this work, the thermal, rheological, transport, and electrochemical properties for a series of solutions comprising of 20 mol kg-1 of CH3COOK with different concentrations of CH3COONa are reported and discussed. The most concentrated solution, i.e., 20 mol kg-1 of CH3COOK with 7 mol kg-1 of CH3COONa came out to be the best in terms of a compromise between transport properties and electrochemical stability window. Such a solution has a conductivity of 21.2 mS cm-1 at 25°C and shows a stability window up to 3 V in “ideal” conditions, i.e., using small surface area and highly electrocatalytic electrode in a flooded cell. As a proof of concept of using this solution in sodium-ion batteries, carbon-coated LiTi2(PO4)3 (NASICON) demonstrated the ability to reversibly insert and de-insert Na+ ions at about -0.7 V vs. SHE with a first cycle anodic capacity of 85 mAh g-1, average charge efficiency of 96% at low current and a 90% capacity retention after 60 cycles. The very good kinetic properties of the interface are also demonstrated by the low value of activation energy for the charge transfer process (0.12 eV).
Supplementary materials
Title
Additional measurements and characterizations
Description
Shear stress vs shear rate curves for the aqueous electrolytes; XRPD patters, SEM images and thermal analysis for the NASICONs, additional electrochemical characterization of the NASICONs in the organic electrolytes
Actions