Heterogeneous Catalysts in Grammar School

13 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The discovery of new catalytically active materi- als is one of the holy grails of computational chemistry as it has the potential to accelerate the adoption of renewable energy sources and reduce the energy consumption of chemical industry. Indeed, heterogeneous catalysts are essential for the production of synthetic fuels and many commodity chemicals. Consequently, novel catalysts with higher activity and selectivity, increased sustainability and longevity, or improved prospects for rejuvenation and cyclability are needed for a diverse range of processes. Unfortunately, computational catalyst discovery is a daunting task, among other reasons because it is often unclear whether a proposed material is stable or synthesizable. This perspective proposes a new approach to this challenge, namely the use of generative grammars. We outline how grammars can guide the search for stable catalysts in a large chemical space and sketch out several research directions that would make this technology applicable to real materials.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.