Insight into the Binding Energetics of Targeted Reversible Covalent Inhibitors of the SARS-CoV-2 Main Protease

08 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The main protease (Mpro) of the SARS-CoV-2 virus is an attractive therapeutic target for developing antivirals to combat COVID-19. Mpro is essential for the replication cycle of the SARS-CoV-2 virus, so inhibiting Mpro blocks a vital piece of the cell replication machinery of the virus. A promising strategy to disrupt the viral replication cycle is to design inhibitors that bind to the active site cysteine (Cys145) of the Mpro. Cysteine targeted covalent inhibitors are gaining traction in drug discovery owing to the benefits of improved potency and extended drug-target engagement. An interesting aspect of these inhibitors is that they can be chemically tuned to form a covalent, but reversible bond, with their targets of interest. Several small-molecule cysteine-targeting covalent inhibitors of the Mpro have been discovered—some of which are currently undergoing evaluation in early phase human clinical trials. Understanding the binding energetics of these inhibitors could provide new insights to facilitate the design of potential drug candidates against COVID-19. Motivated by this, we employed rigorous absolute binding free energy calculations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to estimate the energetics of binding of some promising reversible covalent inhibitors of the Mpro. We find that the inclusion of enhanced sampling techniques such as replica-exchange algorithm in binding free energy calculations can improve the convergence of predicted non-covalent binding free energy estimates of inhibitors binding to the Mpro target. In addition, our results indicate that binding free energy calculations coupled with multiscale simulations can be a useful approach to employ in ranking covalent inhibitors to their targets. This approach may be valuable in prioritizing and refining covalent inhibitor compounds for lead discovery efforts against COVID-19 and future coronavirus infections.

Keywords

Absolute binding Free Energy
SARS-CoV-2
Mpro or 3CLpro
Reversible Covalent Inhibitors
ONIOM(QM:MM)

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.