Abstract
mRNA methylation is an important regulator of many physiological processes in eukaryotes but has not been studied in depth in prokaryotes. In contrast to the large number of eukaryotic mRNA modifications that have been described, N6-methyladenosine (m6A) is the only modification of bacterial mRNA identified to date. Here, we used a gel electrophoresis-based RNA separation method and quantitatively analyzed the mRNA-specific modification profile of Escherichia coli using mass spectrometry. In addition to m6A, we provide evidence for the presence of 7-methylguanosine (m7G), and we found first hints for 5-methylcytidine (m5C), N6,N6-dimethyladenosine (m6,6A), 1-methylguanosine (m1G), 5-methyluridine (m5U), and pseudouridine (Ψ) in the mRNA of E. coli, which implies that E. coli has a complex mRNA modification pattern. Furthermore, we observed changes in the abundance of some mRNA modifications during the transition of E. coli from the exponential growth to the stationary phase as well as upon exposure to stress. This study reveals a previously underestimated level of regulation between transcription and translation in bacteria.
Supplementary materials
Title
Supplemententary Material
Description
Figures S1 to S7, Table S1
Actions