Abstract
Biomolecular phase separation plays a key role in spatial organization of cellular activities. Dynamic formation and rapid component exchange between phase separated cellular bodies and their environment are crucial for their function. Here, we employ a well-established phase separating model system, namely, triethylamine (TEA)-water mixture, and develop an NMR approach to detect the exchange of scaffolding TEA molecules between separate phases and determine the underlying exchange rate. We further demonstrate how the advantageous NMR properties of fluorine nuclei provide access to otherwise inaccessible exchange processes of a client molecule. The developed NMR-based approach allows quantitative monitoring of the effect of regulatory factors on component exchange and facilitates “exchange”-based screening and optimization of small molecules against druggable biomolecular targets located inside condensed phases.
Supplementary materials
Title
Supporting Information
Description
Supporting Information, including Supplementary Methods (Chemicals, DIC and Fluorescence imaging, NMR experiments and data analysis) and Figure S1.
Actions