Abstract
An in-depth understanding of the physicochemical properties of nanorods during the initial growth process has a profound impact on the rational design of high-performance nanorods catalysts. Herein, we conducted a systematic DFT study on the transition metal Co, Ni and alloyed nanoclusters/rods systems to simulate an atomic process from the initial nanoclusters growth to nanorods/wires. We found that the highly active sites of nanorods depend on an interesting electrostatic phenomenon. The surface electrostatic potential analysis shows that all nanoclusters and nanorods structures have formed σ-hole. Unlike nanoclusters, the σ-hole only appears at terminal sites in nanorods, called terminal σ-hole. The elemental composition in nanorods has a certain influence on the maximal surface electrostatic potential (VS,max) i.e., terminal σ-hole. Interestingly, we found that the terminal σ-hole formed in nanorods is generally higher in magnitude than smaller nanoclusters. First-principle calculations show that terminal σ-hole is closely related to the physicochemical activities of nanorods. For example, the work function of the directions forming terminal σ-hole is smaller than other directions. More interestingly, we found that in almost all nanorods, compared with other atoms, the d-orbital of the atoms forming terminal σ‑hole shifts close to the Fermi level and exhibits a shallower d-band center, showing higher chemical activity. In short, it is the first time that we discovered terminal σ-hole in nanorods, explained the theoretical basis of terminal σ-hole in nanorod systems, and provided theoretical guidance for the rational design of high-performance nanorods catalysts.
Supplementary materials
Title
Supporting information-Exceptional electrostatic phenomenon in ultrathin nanorods: the terminal σ‑hole
Description
The geometry structural, energetic and magnetic properties…………………………...1
The surface properties of Co-Ni nanocluster/rod/wire systems………………………..5
The charge transfer of Co-Ni nanowires……………………………………………...10
The partial densities of states (PDOS) ………………………………………………..11
Actions