Active mechanical threading by a molecular motor

26 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular motors transform external energy input into directional motions and offer exquisite precision for nano-scale manipulations. In order to make full use of molecular motor capacities, their directional motions need to be transmitted and used for powering downstream molecular events – a current great challenge for molecular engineers. Here we present a macrocyclic molecular motor structure able to perform repetitive molecular threading of a flexible polyethylene glycol chain through the macrocycle. This mechanical threading event is actively powered by the motor motions and leads to a direct translation of the unidirectional motor rotation into an unidirectional translation motion (chain versus ring). The step by step mechanism of the active mechanical threading is elucidated and also the actual threading step is identified as a combined helix inversion and threading event. The here established molecular machine function resembles the crucial step of macroscopic weaving or sewing processes and therefore offers a first entry point for realizing a “molecular knitting” counterpart.

Keywords

molecular machine
molecular motor
hemithioindigo
indigoids
photochemistry

Supplementary materials

Title
Description
Actions
Title
Active mechanical threading by a molecular motor - Supporting Information
Description
Supporting Information Synthesis, Conformational Analysis, Thermodynamic and Kinetic Analysis, Spectra, Quantum Chemical Calculations, X-ray data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.