Abstract
△SCF methods have proven to be reliable computational tools for the assignment and interpretation of photoelectron spectra of isolated molecules. These results have increased the interest in △SCF techniques for electronic excited states based on improved algorithms that prevent convergence to ground states. In this work, one of these △SCF improved algorithms is studied to demonstrate its ability to explore the molecular properties for excited states. Results from △SCF calculations for a set of representative molecules are compared with results obtained using time-dependent density functional theory and single substitution configuration interaction method.
For the △SCF calculations, the efficacy of a spin-purification technique is explored to remedy some of the spin-contamination presented in some of the SCF solutions. The obtained results suggest that the proposed projection-based SCF scheme, in many cases, alleviates the spin--contamination present in the SCF single determinants, and provides a computational alternative for the efficient exploration of the vibrational properties of excited states molecules.
Supplementary materials
Title
Good Vibrations: Calculating Excited StateFrequencies Using Ground StateSelf-Consistent Field Models
Description
Supporting Info
Actions