Elucidating morphological effects in membrane mineral fouling using real-time particle imaging and impedance spectroscopy

23 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Mineral fouling is a major hindrance to high recovery effluent nanofiltration, with calcium phosphate (Ca-P) and calcium carbonate (CaCO3) the most prevalent mineral foulants. In this study, we used a novel combination of real-time in-line microscopy, electrical impedance spectroscopy (EIS), post SEM analysis, and filtration metrics (water flux and rejection) to study mineral fouling mechanisms of Ca-P and CaCO3 salts in synthetic effluent nanofiltration. We used nanofiltration (NF) polyelectrolyte multilayer (PEM) membranes, prepared by static layer-by-layer (LbL) coating of a cationic polymer - polydiallyl dimethylammonium chloride, and anionic polymer - poly styrenesulfonate (six bi-layer) on a polyethersulfone (PES) ultrafiltration (UF) membrane. Increasing permeate recovery over filtration time was simulated through additions of CaCl2 with NaHCO3 or NaH2PO4/Na2HPO4. Using the novel combination of methods, we delineated the mechanisms governing fouling development with time for both CaCO3 and Ca-P. For CaCO3, a transition from heterogeneous precipitation on the membrane surface (scaling) to particulate fouling due to bulk precipitation was identified. For Ca-P, a transition from fouling by amorphous particles to fouling by crystalline particles was identified; and this phase-change was captured in real-time images using an in-line microscope. We also found that for similar precipitation potentials measured by weight, Ca-P fouling was more detrimental to water flux (86% decrease) compared to CaCO3 (20% decrease) due to the voluminous amorphous phase. We established in-line microscopy as a new useful method to study mineral fouling, as it gives invaluable information on the suspended particles in real-time. Combining it with EIS gives complementary information on mineral accumulation on the membrane surface. Insight from this study and further use of these methods can guide future strategies towards higher effluent recovery by membrane filtration.

Keywords

membrane scaling
effluent nanofiltration
calcium phosphate
calcium carbonate
in-line microscopy

Supplementary materials

Title
Description
Actions
Title
Supporting information - Elucidating morphological effects in membrane mineral fouling using real-time particle imaging and impedance spectroscopy
Description
The supplementary material provides further background and information on the experimental procedures, and repeat experiment data and results not included in the manuscript for lack of space but cited.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.