Abstract
Unequivocal assignment of rate limiting steps in supramolecular photocatalysts is of utmost
importance to rationally optimize photocatalytic activity. By spectroscopic and catalytic analysis of a
series of three structurally similar [(tbbpy) 2 Ru-BL-Rh(Cp*)Cl] 3+ photocatalysts just differing in the
central part (alkynyl, triazole or phenazine) of the bridging ligand (BL) we were able to derive design
strategies for improved photocatalytic activity of this class of compounds (tbbpy = 4,4´-tert-butyl-
2,2´-bipyridine, Cp* = pentamethylcyclopentadienyl). Most importantly, not the rate of the transfer
of the first electron towards the Rh III center but rather the rate at which a two-fold reduced Rh I
species is generated can directly be correlated with the observed photocatalytic formation of NADH
from NAD + . Interestingly, the complex which exhibited the fastest intramolecular electron transfer
kinetics for the first electron is not the one that allowed the fastest photocatalysis. With the
photocatalytically most efficient alkynyl linked system, it was even possible to overcome the rate of
thermal NADH formation. Moreover, for this photocatalyst loss of the alkynyl functionality under
photocatalytic conditions was identified as an important deactivation pathway.
Supplementary materials
Title
Supporting Information
Description
Supporting Information containing synthetic details, characterization of the compounds and different experimental data (catalysis, photocatalysis, transient absorption spectroscopy, resonance Raman spectroscopy).
Actions